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ABSTRACT 

The United States Army intends to enhance combat power on future battlefields 

by skillfully exploiting information and information technology. Of the various 

categories of battlefield information that may ultimately contribute to combat power, 

information about the enemy is clearly the centerpiece. This paper reviews a newly 

developed method of quantifying a Blue commander's information about enemy forces, 

using a measure called information gain. Over an interval of time the measure represents 

the distance between two discrete probability distributions representing the probabilities, 

from Blue's perspective, that a Red vehicle is in various areas of the battlefield. When 

any Blue sensor scans an area of the battlefield, Blue generally gains information about 

the enemy disposition. The information about a detected Red vehicle may degrade over 

time if the vehicle is not continually observed or killed. An information degradation 

model is developed to account for such information reduction. We report the results of 

efforts to automate the information gain measure of effectiveness in Janus and briefly 

discuss its potential uses in combat studies. 
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EXECUTIVE SUMMARY 

We have developed a measure of the theoretical increase in situation awareness of 
a tactical commander as a result of receiving data from reconnaissance, scouting and 
intelligence activities. We intend the measure, called "information gain" (IG), be used as 
a measure of effectiveness of information systems. It is based on the concept of modeling 
a commander's uncertainty about his adversary's disposition in terms of probability 
distributions over the set of states the adversary may occupy. Starting with an initial 
distribution, subsequent updates are calculated using Bayes' formula, exploiting the 
operating characteristics of the sensor systems used and the search activities conducted 
during a sequence of time intervals. 

In particular, the updating process requires the probability of detection and 
probability of false alarm for each set of parameters involved, including the time interval, 
the sensors used, the areas scanned by the sensors and the targets possessed by the 
adversary and their positions. We implemented computation of information gain for 
combat simulations conducted using the Janus model. This proved to be a challenge for 
Janus-simulated combat because we had to devise innovative methods to obtain detection 
probabilities for sensor-target pairs at various ranges, and also to determine the sets of 
cells within the battle area scanned by each sensor during each time interval. We also 
developed ways to account for movement of mobile targets over time. For example, a 
target located at a certain time may not be in the indicated location at some later time, 
provided the target is not killed and it is not re-detected. Thus, information about such a 
target may actually degrade over time. In this report we describe our approaches to these 
and other issues in implementing the information gain measure for Janus applications. 

We believe we have succeeded in making the IG measure available as an MOE 
for analyses in studies using the Janus model. We hope researchers, analysts and combat 
operations experts will find it useful. The implementation methods presented in this 
report can be applied to other combat simulations, so the measure is potentially available 
to a wide segment of the analysis community. 
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1. INTRODUCTION 

The Army has expressed heightened interest in managing information processes related to 

combat operations. This has generated a need in the analytic community for methods of 

measuring information obtained through intelligence and reconnaissance. Commonly used 

analytic measures of the information a commander receives are based on the flow volume or 

transmission rate of messages, message quality, or characteristics of the data given in the 

messages. In addition the cognition of, and response to, information conveyed in a given set of 

data depends upon the receiving commander. This human process depends on the personality, 

training, and experience of the commander. Attempting to measure the information gained in the 

receipt of data, either by looking at parameters of the raw message traffic, the message 

distribution system, or attempting to model a commander's cognition processes, seems difficult. 

A more tractable approach appears to be to attempt to capture the amount by which a 

commander has been informed as a result of receiving reconnaissance and other similar data. In 

[1] an approach is described that involves modeling a commander's uncertainty about his 

enemy's disposition in terms of probability distributions. As the commander gains information 

about his adversary, the probability distributions are updated to reflect the new state of the 

commander's uncertainty. Using this approach, along with information theoretic measures 

related to the probability distributions [9], a measure is proposed of the changes in uncertainty 

brought about by the receipt of new data. This approach to modeling information gain in terms 

of decreased uncertainty appears to fall somewhere between approaches that model 

characteristics of the physical communications system and those that attempt to model human 

cognition and response of the decision maker. 

As the discussion below reveals, calculating the measure is simple once the probability 

distributions are known. Developing the probability distributions, however, is much more 

tedious. We have used various techniques of developing these distributions in previous work 

[ 1 ] [2] [3] [8] [ 10] [ 11 ]. Unfortunately, each of these techniques requires time consuming manual 

effort. We recognized early on that if the information gain measure were to be used by analysts 

and warfighters, we needed to find a way around most of the overhead involved in its 

computation. In order for the information gain measure to be used in analyses of simulated 



combat, the measure must be automated and included in simulation post-processing tools. Since 

we have access to Janus we decided to automate the measure in Janus using the Janus Enhanced 

Tool Set (JETS). JETS is a post-processing tool developed by the Department of Systems 

Engineering, USMA for use in combat simulation studies. As part of the effort to automate the 

measure we developed an algorithm for updating the probability distributions that can be 

implemented in software. We chose to apply a conditional probability approach using Bayes' 

formula. A discussion of the underlying theory for updating probability distributions follows. 

We intentionally omit discussion of developing the initial (or prior) distribution here; it is 

assumed we begin with a uniform distribution of possible target locations. 

The Measure 
Information gain measures the Blue force's awareness of Red's disposition, over time. 

For our purposes, "disposition" means the number and location of Red combat systems such as 

tanks and armored personnel carriers. Within a time interval of duration At, say (t, t+At), the 

measure is a distance measure between two probability distributions P, and Pt+At which we refer to 

as the prior and posterior distributions respectively These distributions represent the discrete 

probabilities, from Blue's perspective, that a Red vehicle is in various areas of the battlefield. 

Consider the case of one enemy vehicle located somewhere on a battlefield partitioned into cells, 

so each cell has a particular probability of containing the Red system. The sum of the discrete 

probability values over all cells would be 1.0 with those areas of greatest likelihood having the 

larger values. At the beginning of the time interval (t, t+At) Blue's uncertainty about the Red 

disposition is represented by the prior distribution Pt. If the Blue force believes that the Red 

vehicle is equally likely to be in any one of the cells, the prior distribution would be uniform over 

the cells. 

When any Blue sensor scans a portion of the battlefield Blue gains information about the 

enemy disposition. If Blue possessed a perfect sensor, in this scan he would either determine 

Red's location or discover cells within the battlefield in which Red is not located. The 

magnitude of the new information depends on the operating characteristics of the Blue sensor as 

well as the outcome of its scan. For example, if a particular Blue sensor has a probability of 

detection (PD) of .8 then it has a .2 probability of failing to detect an actual target's presence in a 



scanned cell. Since Janus does not play false "detections," we assume the sensors possessed by 

Blue have zero false-alarm probability (i.e., PF = 0). The cells searched by Blue during the 

interval (t, t+At) receive updated probability assignments based on the operating characteristics 

of this sensor. Our method of updating the probability distribution from Ptto Pt+At is an 

application of Bayes' formula [1]. The Bayesian calculations incorporate PD and Pt values in 

order to update to the posterior distribution Pt+At. This posterior distribution represents Blue's 

new uncertainty about Red's disposition and becomes the prior distribution for the next time 

step, (t+At, t+2At). 

The prior is updated to the posterior using knowledge of which cells have been searched 

and the PD of the searching sensor(s). Let T(j) denote the event that there is an enemy vehicle in 

cell j and let I(j) denote the event that Blue sensors report that there is an enemy vehicle in cell j. 

Suppose Pj, pj5 etc. denote individual prior probabilities of the events T(i), T(j), etc. With the 

assumption of zero false alarm rate for Blue sensors we have, by Bayes' formula: 

P[TG)|IG)] = 1.0; 

P[T(i) | IQ)] = 0.0;  where i*j; 

P[T(i)\~iU)] = T-^—; (i) 

and 

Q-PD)PJ 
P[T(j)\~IU)]=  X_PDP   > (2) 

where "~I(j)n indicates the event "search in celly fails to detect the target." Equations (1) and (2) 

apply to the situation where Blue searches and fails to detect the target during one time interval. 

Equation (1) applies to a cell where Blue does not look. Equation (2) applies to a cell where a 

Blue sensor looks and fails to detect. Note the prior probability assigned to cell j, Pj is reduced 

but is not driven to zero unless the PD of the Blue sensor is 1.0. Since the denominators in each 

case are identical we treat them as a multiplying constant. If Blue finds the target, the cell 

containing the target is assigned a cell probability of 1.0. All other cells are assigned zero 



probability since Blue knows the vehicle's location. See [1] for a complete development of this 

formulation. 

As mentioned above, information gain is a measure of the distance between the prior and 

posterior distributions. This distance is represented as the change in entropy resulting from 

updating the prior to the posterior distribution. Shannon defined entropy as a measure of 

randomness or uncertainty [9]. For our application the entropy (uncertainty) of the posterior 

distribution is subtracted from the entropy of the prior distribution. In this respect the 

information gain metric captures the decrease or increase in uncertainty concerning the location 

of Red systems during each time interval. This change in entropy is information gain: 

S(pt,p« + A/)) = J]/7(i + &i)ln(po + A/)) -^pilnfjpi), 

where summation is over all cells for which pt(pt+At) is positive [1]. 

Method ofBayesian Location Updating Applicable to Janus 
The foregoing shows how Bayes' formula could be applied for search by a single sensor 

in a single cell of the battle area. Next we show how this is easily extended to searches of 

multiple cells in each time period, by multiple Blue sensors. We also describe the corresponding 

computational methods we used. 

Consider first the case for a single Red target and a single Blue sensor and index the cells 

in the battle area by 1,2, ...,n. The prior probability vector Pt = (pj, p2,..., Pn) is to be updated (to 

the posterior vector P,+At) at the end of each time increment, using Bayes' formula. If the target is 

detected and located during the time period, the posterior distribution is of the form 

(0,0,...1,...,0), so the entropy for that target drops to zero and information gain jumps to ln(n) at 

the end ofthat time. If cells in a set K = (k, k+1,,.., k+m} were searched during the time period 

and the target was not detected, the posterior would be computed as follows. 

Let TO) denote "target in celly," and I(K) denote "target found in the set K={k, k+1,.... 

k+m)," and let ~I(K) denote "search of cells in the set K fail to detect the target." Let PD be the 

detection probability and^- be the prior probability of the event T(j), as before in Equations (1) 

and (2). 



Case (a): posterior for cell j, jgK. 

P[~I(K)\T(j)]-Pj 
P[T(j)\~ I(K)] = 

2>[~ I(K)\T(j)]-Pj + 2>[~ /(^)|7,(7)]-JP7 

Pj Pj 

Tpj+H(l-PD)Pj     D 

Case (b): posterior for cell j, jeK. 

P[~I(K)\T(j)]-Pj 
P[T(j)\~ I(K)) = 

2>[~ IiKyTUlYPj+YsPi- I(K)\TU)]-Pj 

Pj(\-PD) Pj(l-PD) 

I,PJ+IIQ-PD)PJ D 

jtK jeK 

where D denotes the common denominator in the two cases. 

Computation of the posterior distribution can easily be accomplished by exploiting the 

fact that the denominator D is the same in both cases above. We may proceed as follows: for all 

j for the set K of cells searched in the time interval, replace the current prior probability the target 

is in celly, pj, by PJ{1-PD)< where Pj) is the detection probability of the given Blue sensor 

against the target in question. Then sum the elements of the resulting vector and unitize the 

vector by dividing each element of the vector by the sum of the elements in the vector. This 

vector is the current posterior distribution at the end of the time interval in question, and it 

becomes the prior distribution for the beginning of the succeeding time period. 

It is useful to note the posterior could also be computed by envisioning the cells in the set 

K were searched in some order, and the distribution was sequentially updated after each 

individual cell search, rather than at the end of the time period, as above. This would lead to 

multiplying the prior value, pj5 by the non-detection probability, 1- Pj), for the sequence of cells 

j, one at a time. The final resulting posterior, after updating with each individual cell search, 



would be exactly the vector as shown above. We observe this is true, regardless of the order in 

which we imagine the cells in the set K are searched. 

Now, consider the case (relevant for Janus computations) in which the probability of 

detection is a function of Blue's sensor, s, and any cell, c, in which it looks sometime during the 

time increment. Denote this probability by Dsc. Moreover, let Dsc = 0 for any cell c not 

"inspected" by a given sensor, s during the time interval. The probability of non-detection by all 

sensors looking in the j* cell is the product of the probabilities of non-detection by each sensor 

looking in that cell in the given time period, assuming independence among the sensors. Then 

the posterior probability vector for the target in question, given it was not located in the time 

increment under consideration, is found by unitizing the vector whose i* element is 

1 Lall sensors \*~ ^s,i ) ' Pi    ' 

using the convention mentioned above for cells not inspected by the various sensors. This 

posterior updating can be carried out in one operation for all entries in the prior vector 

(corresponding to cells making up the battle area). Thus, if p, denotes the prior vector at time t (a 

stochastic vector having k elements), and dj+At denotes the non-detection probability vector for the 

t* time interval, whose elements are composed of the values ns (l-DsJ ) , then the posterior vector 

at time t+At is pt+At = pt®d,+At /1 Et®d,+At I where "<8>" denotes component-wise multiplication and 

"| • |" denotes the sum of components in the vector involved (so this division constitutes 

unitization of the vector pt<8>d,+At). As mentioned before, this holds only for targets not located in 

the time interval; otherwise the posterior vector is of the form (0,0,...,1,0,...,0), where the "1" is 

in the location corresponding to the cell in which the target was found. 

Example 

Assume the Blue sensors are perfectly accurate (i.e., in each cell searched, PD = 1.0 and 

false alarm probability is zero). If Blue detects the Red vehicle in cell j, then 1.0 is assigned to 

cell j and zero probability is assigned to all other cells. Blue's cumulative information gain will 

be at maximum value since Blue now knows all there is to know about this Red vehicle. In the 

case of one vehicle located in one of 100 cells, the maximum amount of information that could 

be attained is ln(100) = 4.605 [1]. If the enemy vehicle is detected during the 1st time step, the 

information gain for that step would be the maximum value and the search would be over. 
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Likewise, the search is over when the vehicle is detected during any time step and the 

information gained for this time step is the maximum possible gain, 4.605, minus the cumulative 

gain up to the time of detection. 

When Blue searches for multiple Red vehicles we simply multiply, at each time step, the 

information gain for one vehicle by the number of Red vehicles. In our example, assuming five 

enemy, the maximum gain would be 5*ln(100) = 23.026. When we search a cell and find no 

vehicles we know that none of the five vehicles is in that cell, hence five times the gain for an 

individual vehicle. If we find a vehicle during the search, the information gain concerning that 

particular vehicle makes a jump up to ln(100) or one-fifth the total possible gain. For those 

vehicles remaining undetected, the gain generated by searching and not finding is now multiplied 

by four; we have found where four vehicles are not located. Figure 1 illustrates this approach. 

The graph at the right of Figure 1 represents the sum of the two plots shown in the leftmost 

graph. 

We transform the information gain values to the scale (-1,1) so that the values calculated 

over each At are relative to how much information could be known. This gives us a normalized 

scale and a basis for comparison. 

0.5 

i i i i i i 11 i i i 11 i i i 11 i i i i i i i i 11 i i i 11 i i 

3       6       9      12     15     18     21     24     27     30     33     36     39 

Time 

ii 



We felt that a degradation effect was necessary to realistically model Blue's situation 

awareness since information is so extremely time sensitive. If a detected Red vehicle is not 

killed or re-detected we allow the information gain for that particular vehicle to degrade over 

time. Blue's spike of certainty "melts" with each passing time period as the size of the area 

known to contain the Red vehicle (1 cell size = 100m X 100m) expands. The rate of degradation 

is determined in part by the movement potential of Red vehicles. We give a detailed description 

of the degradation model in Section IV. 

■■■wimiinwmi 
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Figure 2. Hypothetical chart illustrating the individual and cumulative information gain 
values for each enemy vehicle over time. 

A hypothetical chart of information gain concerning each enemy system is shown in 

Figure 2. Figure 2 also shows the cumulative information gain for Blue over all enemy systems. 

Computing the total information gain occurring during a time step requires a summation of the 

varied contributions to the total from each individual enemy system. Our software therefore 

must keep account of the state of each enemy system from Blue's perspective. The possible 

states are: 

• Area - Blue is searching and finding where the vehicle is not located; 

• Detection - The vehicle has been found; 

12 



• Degradation - The vehicle was detected but not killed (so it could move away from where it 

was detected); and 

• Kill - The Blue force has killed the Red vehicle (no further movement possible). 

Enemy vehicles transit from one state to another at the conclusion of a time step. The possible 

transitions are depicted in Figure 3. 

igure 3. State transitions of enemy vehicles from Blue's perspective. 

All enemy vehicles begin in the Area state. When enemy vehicles are in the Area state, 

Blue's information gains are determined by Blue searching and eliminating possible locations of 

these enemy vehicles. 

Vehicles in the Detection state have been detected by at least one Blue sensor. Blue gains 

substantial information from a detection as can be seen in Figure 2. The spikes in information 

gain correspond to detections of an enemy vehicle. 

Degradation begins in the time step immediately following the time step in which 

detection occurred provided the vehicle is not detected again or killed. 

When Blue kills an enemy, Blue knows all there is to know about that enemy. We 

assume that this information does not decay. The dead vehicle's contribution to Blue's situation 

awareness reaches and remains at maximum value. This is illustrated in Figure 2 for vehicle 5 

during the eighth time step, vehicle 1 during the eleventh time step, vehicle 2 during the 

fourteenth time step, and vehicle 4 during time step nineteen. 

Note that it is possible to transit directly from the Area state to the Kill state. This may 

seem counterintuitive. It happens when a particular vehicle is detected and killed during the 

13 



same At. Note also that a vehicle can transit from Degrade to Area. This occurs when the spike 

in information gain due to detection has degraded over time to the point that no more is known 

about this particular vehicle than is known about those vehicles that have remained in the Area 

state. 

In this regard, the information gained through searching and not finding serves as a lower 

bound on degradation. Vehicle 3, in Figure 2 above, degraded down to this lower bound at step 

10, after being detected by Blue during the fourth time step. After step 10, vehicle 3 remained in 

the Area state for the rest of the battle; Blue's only awareness of vehicle 3, after step 10, was 

gained by finding where vehicle 3 was not located. 

2. IMPLEMENTATION IN JANUS 

Though the theory is simple, its implementation in the Janus model was very 

challenging. The Bayesian formulation presented above requires three types of data during each 

time stage: 1) knowledge of cells Blue sensors looked in, 2) the probability of detection (PD) 

for the sensors that did the respective scanning, and 3) the prior distribution Pt. These data are 

not directly available in Janus runs. Nor can they be deduced from Janus output files. For 

example, the Janus algorithms for line of sight computations and detection of enemy vehicles are 

only called when two opposing vehicles are within some threshold of proximity to each other. 

Since information gain credits finding where the enemy is not, we need to know at each time 

increment what terrain cells Blue sensors have searched regardless of the presence or absence of 

enemy vehicles. Likewise, we need to know what the PD would have been for each particular 

sensor and cell pair, had there been an enemy vehicle present when the sensor searched the cell. 

For our purposes, a sensor is considered to have searched a cell within a time increment if it has 

unobscured line of sight between its position and the particular terrain cell during that time. 

Our approaches to determining which cells have been searched and the probability of 

detection of the searching sensor are discussed in Sections II and III; additional details 

concerning Bayesian updating from Pt to Pt+4t are given in Appendix A. 

14 



Software Design 

Janus is the initial target for implementing this theory, but it is recognized that benefit can 

be obtained from its use in other models. Therefore, certain goals and constraints were imposed 

in the software design: 

• The automated tool should require no "hooks" in the parent model. This mandates that it be 

either a pure postprocessing tool or a "delayed real-time" tool. The latter approach monitors 

the host simulation recording files and updates itself whenever the simulation dumps its event 

buffers to disk. For this proof of concept we adopted the former approach. 

• It should be tolerant of terrain grid spacing variants. Janus terrain normally uses 100-meter 

resolution, but it is not required. Other models, such as ModSAF (Modular, Semi- 

Automated Forces), use 125-meter resolution. Our implementation converts all resolutions to 

100-meter postings. 

• It should be computationally inexpensive. A postprocessor with "unreasonable" computing 

time stands little chance of being used. Our self-imposed constraint was five minutes; actual 

processing time of a 45-minute battalion-on-battalion test run took about one minute. 

• It should produce meaningful output for a wide variety of users. As a measure of knowledge, 

more should be better and scaling should be such that scenario comparisons make sense. 

• It should be portable. This prototype is written in ANSI C and, although it is Janus specific, 

modules can be tailored to accept output from other combat simulation models. 

A more complete overview of software specifications is at Appendix B. 

Janus Application Concept 

After loading the terrain battle space and combat system data in Janus, the following 

actions are implemented for each time step: 

• Calculate which terrain cells all observers could be expected to scan. 

• Update the p values of all terrain cells (based upon the information gained from viewed 

terrain cells to represent the new probabilities of the cells containing a target. 

• Calculate entropy for each enemy unit based on the entire terrain cell probabilities. 

• Update detections and multiply the number of aggregated sub-units by the single-unit entropy 

for that side. 

15 



• Account for degradation of previous detections. 

• Update the entropy multiplier to reflect killed units. 

Battle Space 

Battle space is "determined by the maximum capabilities of friendly and enemy forces to 

acquire and dominate each other by fires and maneuver and in the electromagnetic spectrum." 

[16]. The Operations field manual states, "Commanders use the concept of battle space to help 

determine how the terrain and all available combat power can be used to dominate the enemy and 

protect the force..." [15]. Our approach is to consider only that part of the terrain file that 

constitutes the Blue unit's battle space. Doing so provides an accurate representation of 

information operations and minimizes unnecessary computations. 

Building a battle space box is a process of enlarging a rectangle around all the entities 

such that it marks the maximum capabilities of friendly and enemy forces to acquire and 

dominate each other by fires and maneuver. This is done by reading entity locations and 

expanding the coordinates around them the distance of their longest-ranged sensor. If those 

coordinates exceed the cardinal boundaries previously set, the boundaries are pushed out to the 

new dimension. This process is illustrated in Figure 4. 

When computed for every position of every entity for the duration of the battle, a 

reasonable subset of the terrain file is defined. Battle space elevation and feature data are read 

into memory, as are the combat system data. Feature data describes items such as buildings, 

bridges, dams, etc. which realistically would affect line of sight. We include the feature data for 

later software modifications and improvements but do not use it in this prototype. The software 

interfaces with the Janus files listed in Table 1. Table 1 also contains a brief description of each 

file's role. 
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Figure 4: Battle Space 

The software interfaces with the Janus files listed in Table 1. Table 1 also contains a brief 

description of each file's role. 
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File Provides 

JSCRNsssrr.DAT Terrain file to use 

TERAINttt.DAT Elevation and feature data 

DPLOYsss.DAT Initial entity locations 

FORCEsss.DAT Scenario force structure 

PPMOVEsssrr.DAT Time, unit, location, direction of view and view fan 

PPDTECsssrr.DAT Detection events 

PPKILSsssrr.DAT Kill events 

SYSTEMsssrr.DAT System characteristics, with sensor height and range 

ttt=terrain number; sss=scenario number; rr=run number 

Table 1. 

3. DETERMINING CELLS SEARCHED 

Line of Sight 

Janus is typical of Army combat simulations in the use of gridded cell terrain based on 

Digital Terrain Elevation Data (DTED) from the Defense Mapping Agency (DMA). This 

format, which covers most of the world, records the height above sea level at regular intervals. 

The most widely used interval, or resolution, is every 100 meters. 

Elevations between these "posts" often is interpolated for greater accuracy, which is 

important when determining line of sight (LOS) between two specific points. Our approach, 

however, is to consider each 100 meter square as a horizontal cell with the elevation determined 

by the post at the lower left corner. We chose this convention for several reasons: 

•    We are concerned with potential LOS to all points within a terrain cell. 
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• The number of computations per cycle must permit a reasonable run speed. 

• The accuracy of this method is sufficient for our purposes. 

These considerations fully support the use of the Bresenham Line-of-Sight Algorithm. 

The Bresenham algorithm determines the path of contiguous terrain cell elevation posts that best 

correspond to the observer/target (O/T) line. The algorithm finds a path from observer to target 

along elevation posts through iterative steps. For each iteration the algorithm evaluates the 

coordinates of the current posts to determine which coordinate of the post (X or Y) has the 

greatest error from the destination or target post. The algorithm selects the next post by moving 

to the nearest post in the direction of greatest error. If the coordinate errors are equal the 

algorithm selects the next post diagonal from the current post. Note in Figure 5 that the first post 

selected is 111. Post 111 is four units away form the target post in the X direction and 3 units in 

the Y direction. The Bresenham algorithm therefore selects the next closest post in the X 

direction, post 116. This technique is fast and computational inexpensive since it plots an O/T 

line ray in 100-meter segments and avoids floating point math by using integer arithmetic [17]. 

To implement this technique, we determine the X and Y positions and the height of the 

sensor and the target. We then proceed through the following algorithm: 

1. Which is least: delta_x or delta_y? (Ax is the difference between sensor X coordinate and 

target X coordinate). This is the initial direction of movement. 

2. Plot an interim "target" point one-grid cell along the axis chosen or at the diagonal post in the 

direction of the target. 

3. Check for LOS between the observer and the interim target. Our method is to compare the 

slope of the current O/T line with the last slope known to block LOS. If the current slope is 

greater, we assume LOS. 

4. Continue to loop through steps 1 and 3 until the target is reached. 

The following example illustrates this process: 

Observer 
X Location 0 
Y Location 0 
Z (above ground) 2 

Table 2. Sample Observer/Target Coordinates 

Target 
X Location 4 
Y Location 3 
Z (above ground) 1 
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The dashed diagonal line represents the 

true direction of sight. The solid line shows the 

path chosen by the Bresenham algorithm to 

estimate the O/T line. The numbers represent 

elevation postings and are marked in the lower 

left of their cells. We assume for our purposes 

that a cell whose post is visible is completely 

visible to our observer. Cell (2,2,129) is not 

considered in this illustration because the routine 

chose (3,2,134) as the post nearest to the O/T 

12 3 4 

Figure 5: True vs. Bresenham Plot 

line. If the two cells produce different LOS determinations, subsequent checks along the O/T 

line may be incorrect. This effect is mitigated through the series of near-to-far, right-to-left scans 

conducted for each sensor and time step (see View Fan discussion below). A cell "missed" on 

one near-to-far scan is likely to be picked up on the next scan, since it is not flagged as "seen." 

The observer's elevation is the ground elevation plus the height of the sensor in the 

observer's cell, in this case 132. The target is the lower left corner of each successive cell along 

the O/T line. We compare two slope values as we progress down the O/T line: an O/T slope and 

a "blockage slope." For LOS to exist to the target, the value of its O/T slope must be greater than 

that of the blockage slope. 

Since the observer actually may be in any part of the observer cell, we assume that cell 

can be seen. The initial slope therefore is (111-132)/1 = -21. This also becomes the initial 

blocking slope. The slope to cell two (2, 1, 116) is (116-132)/2 = -8. Since this value is greater 

than the blocking slope, it is considered visible. It also becomes the next blocking slope. The 

next step is to apply a probability that an enemy would be detected in that cell if it were there. 

This detection probability (PD, discussed later) is stored in a structure representing that cell. The 

process repeats for the remaining cells. The slope to cell three is .67, again potentially visible 

and again becoming the blocking slope. Finally, the slope to the end of the O/T line, the 

maximum range of the system's sensor, is -.25. This is less than the blocking slope of .67 (from 

3,2,134), so there is no visibility to this area and PD need not be computed. 
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Figure 6 shows a profile of the 

terrain in this example, along with the 

view from the observer to the progressive 

targets along the O/T line. 

Our process must be adequately 

robust to assess the conditions shown in 

Figures 7 and 8, where the dashed lines 

indicate intervisibility. 

100 200 300 

Range (meters) 

400 

Figure 6: Terrain/View Profile 

Figure 7. LOS with positive slope Figure 8. LOS with negative slope 

View Fan 

Entities in the Janus model have view fans composed of a direction of view and a right 

limit. This "half fan" is mirrored to provide a complete view. We use data from Janus scenario 

and recording files to find the X and Y coordinates of the observer and the point at the extreme 

sensor range along the right limit. 

• X = range times cosine of the central angle added to the observer's X 

X = r*cos(0) + Xobseiver 

• Y = range times sine of the central angle added to the observer's Y 

Y = r*sin(0) + Yobserver 
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A near-to-far scan as described earlier checks each cell from observer to the maximum 

sensor range of the entity. We then loop through a series of counterclockwise moves and checks 

until the entire view fan has been checked. The number and size of those moves is determined 

by dividing the total fan angle (2 times the half-angle) by the arc length of the fan. 

• Number of steps = range times (2 * fan angle); s = r (0) 

• Step size = (2 * fan angle) divided by number of steps; 

step size = 0 / number of steps 

A temporary "seen" flag is set for each cell with LOS as the fan is checked. This flag is 

checked on subsequent rays so that calculations are 

performed on a "seen" cell only once per fan. This 

flag is cleared for all cells in the fan before the next 

one is scanned. 

Three errors may be introduced by the "nearest 

corner" nature of the Bresenham algorithm. First, 

some cells near the arc may be missed, even though 

every cell along the arc is checked. Second, some 

cells may not be flagged as visible when they should 

be because LOS was blocked along one ray and the 

cell was skipped on the next. Third, some cells may 

appear inside or outside of the view fan. 

Consider the output shown in Figure 10 (where S = Seen; B = Blocked). Notice that cell 

(1, 5,132) is not marked with an S (Seen) or B (Blocked), suggesting that it was missed. 

Likewise for cells (2,4,126), (2,6,127) and (8,4,114). Cells (6, 8,127), (7, 7,118) and 

(9, 4,122) appear to be outside the view fan since there is no ray drawn in those cells. However, 

shifting the fan east (right) within the same observer's cell initially corrects this apparent error. 

Figure 9. Janus View Fan 

Observer location 

(Z is ground level) 

Max view 

(in grid cells) 

View 

(Radians) 

Half-fan 

(Radians) 

X=5; Y=9 6 4.71 (south) .643501 
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Figure 10. LOS Fan Results 

Round Earth Correction 

Curvature of the earth is a concern since we are dealing with sensor ranges beyond 3 

kilometers. This can be corrected by using a method such as that described below [18]. This 

correction is not currently implemented in the prototype software. 

AH = (R*CscG)-Rearth*R2/2*Rei arth 

AH = elevation change R = Range 

1 cell = 100 meters 

R^rth = Radius of Earth 

6,356,766 meters 

Table 3. Accounting for Curvature of the Earth 
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Delta H is rounded to the nearest whole number and subtracted from the elevation of the 

target cell. Table 4 shows how this becomes important in our considerations. A tank with a 

height of 3 meters which is visible at 7 kilometers in a flat-earth model actually would not be 

visible in the real world even on completely "flat" ground. Radars must be treated differently. 

In Radar Handbook, Skolnik suggests using 4/3 x R^ for radar systems [19]. 

Range (Km) AH(m) Range (Km) AH(m) Range (Km) AH(m) 

1 0.078656 4 1.258502 7 3.854161 

2 0.314625 5 1.966409 8 5.034006 

3 0.707907 6 2.831629 9 6.371164 

Table 4. Apparent Change in Elevation due to Curvature 

Another factor in considering the battle space is the size of the available terrain map. 

Checks must be imposed to prevent a ray from exceeding the edge of the digital world. 

Initial Results 

Test runs were made using a U.S.-style battalion task force attack on Red defensive 

positions in Northeast Asia, a scenario derived from TRADOC High Resolution Scenario 31. A 

Plan View Display is shown in Figure 11. Blue forces, deployed in the southwest corner, 

advance north, and then turn east to attack into the enemy's flank. The terrain is mountainous 

except in the area shown, limiting Blue's observation. Normalized cumulative information gain 

traces for a typical Janus run are shown in Figures 12 and 13. Figure 12 shows increasing 

information gain based on cell searches, without detection. The fairly small increase can be 

attributed to the rugged terrain surrounding the area of operations. As actual detections and kills 

are considered (Figure 13), the increases become more pronounced. 
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Figure 11. Scenario Plan View Display 

Figure 13 shows cumulative information gain over time (solid line) and the portion 

attributed to search without detection (dotted line). The initial ramp in information gain, at step 

2, results from detection of a BMP platoon (three vehicles). As contact is broken (at step 9), 

certainty decays to the value it would have been, had no detection occurred (step 10). Our 

expectations are confirmed by the coincidence and continuation of the line along the no-decay 

plot and the limiting of decay at the terrain-only plot. 
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Figure 12. Gain based on terrain awareness only (Scale = 0-1) 

4. PROBABILITY OF DETECTION 

Independent detection modeling is required to estimate the chance that an enemy would 

be detected in a "seen" terrain cell if it were there. Janus computes detections only when an 

entity on the shooter's target list falls within its range fan. We wish to compute PD for each 

terrain cell within the observer's range fan that the observer can see (i.e., there exists line-of- 

sight between the searching sensor and the terrain cell). For the current prototype, a placeholder 

value of PD = .80 is used for all sensors and ranges. 

Ideally, we prefer using the Night Vision and Electronic Sensors Directorate (NVESD) 

algorithm. The implementations of this algorithm are fundamentally the same in Janus, 

ModSAF and other models and therefore enhance portability [14]. Input data for the NVESD 
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model are available in the Janus scenario's SYSTEMsss.DAT file. For our purpose, PD is the 

same as NVESD's P„, which is the probability that a target will be acquired in an infinite amount 

of time. We have been, so far, unsuccessful in our attempts to exploit this "on-board" Janus 

capability for our particular purposes but intend to continue the effort. 

•<-     m     u>     N.     o)     i- 

Time Step 

Terrain Update Only ■ ■Information Gain 

Figure 13. Comparative Entropy 

An alternative approach that we have investigated is modeling detection probability using 

the Janus graphical validation and verification (V&V) information. In the V&V section of the 

Janus users interface we discovered curves that provide a representation of probability of 

detection data for each observer-target pair. These graphs can be defined by either primary or 

secondary sensors against a stationary or moving enemy target, and can be varied from simple 

detection to actual identification of the enemy. We decided to try to replicate the information in 
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these curves with a closed form function mapping the range from sensor to target into PD An 

example of the type of curves displayed in the Janus V&V section is shown in Figure 14 below. 

: Graph Verify WS2                                                                                                                                                                                                   HE1 
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Figure 14. Probability of detection curve versus range (km) for a FistV w/ thermal sights vs. a 
stationary (solid line) T80. 

The plot of a FISTV seeking a stationary T80 with a Thermal Sight is a continuous, 

monotonically decreasing function that begins at 1.0 and asymptotically approaches zero as 

range increases. This graph represents the probability of detection as a function of range, given 

the friendly vehicle/sensor type and enemy vehicle. Although this is a simplification of the Janus 

algorithm, it still represents the general physical nature of detection probability. As range 

increases, the likelihood of detection decreases. 

To replicate these curves, we entered the graph for an observer-target pair, extracted 

ardered pairs (range, PD) from the graph, and fit a function to the ordered pairs. We decided to 
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model the primary and secondary sensors on representative ground and aerial systems against an 

enemy T80 tank. For ground systems we chose the FistV, Ml, and M2. We chose the AH-64 

for aerial systems. Since the data represents probability of detection as a function of Range for 

each sensor, we were able to fit a curve to the data with standard mathematical techniques. The 

fitting procedures we attempted were polynomial curve fitting, cubic spline interpolation, fitting 

inverse functions to the data, conducting straight interpolation of tabled data, and performing 

logistics regression on the data. The method we chose was logistics regression. See [13] for a 

full development of these alternative approaches and the analysis supporting logistics regression. 

Ground Vehicle Sensors 

The 2nd order Loglog regression model for ground vehicle sensors: 

T(y) = ln(- ln(l - y)), with the associated inverse transformation; x(g(x)) = 1 - e ~e 8 * , 

Where g(x) = a + ßxxx + ß2x\ + ß3x3 +ßAx4 +j35x5 +ß6x6 + ß7x7, and: 
a   is the ^-intercept in the transformed space. 
/?!  is the coefficient multiplied by the data in the Xrange Column. 
ß2 is the coefficient multiplied by the data in the Xrange2 Column. 
ß3 is the coefficient multiplied by the 1 or 0 in the FistV Column. 
ßA is the coefficient multiplied by the 1 or 0 in the Ml Column. 
ß5 is the coefficient multiplied by the 1 or 0 in M2 Column. 
ß6 is the coefficient multiplied by the 1 or 0 in the Thermal Column. 
ß-j is the coefficient multiplied by the 1 or 0 in Optical Column. 

A typical equation for g(x) will look like: 

g(x) = 16.244877-0.451966x, + 0.00660 14JC
2
 -0.313104x3 -0.2118893x4 +0x5 

-14.058842x6 -12.466667x7 

which will be coded into the detection algorithm along with 7t(g(x)) = 1 - e~e      . This is used 
to predict the probability of detection, PD, for the given ground vehicle sensors against the given 
target. A plot of PD versus range for this combination is shown in Figure 15. 
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Figurel5. Graphic comparison of Loglog quadratic fit to original data, (Ml (therm) vs. 
T80). 

Aerial Sensors 

The 3rd order Logit regression model for aerial sensors: 

7Iy) = ln y 
\\-y> 

with the associated inverse transformation; n{g(x)) = 
,(«(*)) 

1 + e (*w) ' 

Where g(x) = cc + ßlx} + ß2x\ + ßixi +ß*x4 +ßsx5 +ßexe +ßnxi > an<^: 

a is the ^-intercept in the transformed space. 
/?! is the coefficient multiplied by the data in the Xrange Column. 
ß2 is the coefficient multiplied by the data in the Xrange2 Column. 
ß3 is the coefficient multiplied by the 1 or 0 in the Xrange3 Column. 

ß4 is the coefficient multiplied by the 1 or 0 in the AH-64 Column. 
ß5 is the coefficient multiplied by the 1 or 0 in OH-58D Column 
ß6 is the coefficient multiplied by the 1 or 0 in the Thermal Column. 
ß1 is the coefficient multiplied by the 1 or 0 in Flir Column. 
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The final equation for g(x) with estimated coefficients for these sensor-target pairs is: 

g{x) = 866.981162-2.254311*! +0.136956*,2 - 0.002840x1
3 -788.398867x4 

-789.333333x5 -67.706670x6 -66.92857bc7 

This will be coded into the detection algorithm along with n{g{xj) = ■ which will 
1 + eUW) 

predict the probability of detection, PD, for aerial sensors. A plot of PD for these sensor-target 
pairs is shown in Figure 16. 
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Figure 16. Graphic comparison of Logit cubic fit to original data, (AH-64 (therm) 
vs. T80). 

The logistics regression models provide accurate models of the physical nature of 

detection. The chosen Loglog and Logit models provide an adequate fit to the data provided by 

the Janus V&V curves [13]. 

This alternative estimate of detection probability can be accomplished with reasonably 

small computation time and data storage. The model, while crude, is a marked improvement 
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over using the .80 constant for PD and appears to be an adequate substitution for the NVESD 

model, for our application. 

5. INFORMATION DEGRADATION 

General Description of the Concept 

The concept of degrading the information about a detected target over time if a clear line 

of sight with it is lost is a logical extension of the information gain model. Consider that an 

enemy vehicle was detected in a particular cell at a time to- At time to, the knowledge ofthat 

enemy vehicle is complete and a probability mass of 1 is assigned to the cell it occupies. 

However, as time progresses beyond to, the certainty of the target's location is reduced, provided 

this vehicle is not detected or killed subsequent to tQ. In this case, the possibility exists that the 

vehicle occupies one of the surrounding cells. In one time increment we assume it may still be 

located in the same cell, or it may have traveled to an adjacent cell. Assume the target is 

traveling at a rate r. Then at any time t+At the maximum distance it could have traveled is rAt. 

Ideally this would define a circle with radius rAt around the original location. In order to 

simplify the computations, to conform to the square grid pattern of cells, and most importantly, 

to facilitate future enhancements of the model, we assume the vehicle may radiate outward from 

the initial point in a square pattern. This simplification provides a slight over estimation of 

degradation because it assumes the vehicle could be anywhere within a square region slightly 

larger than the corresponding circular region. 

In order for this degradation process to occur, two conditions must hold. First, for 

obvious reasons, the vehicle must be detected, but not killed. This would occur, for example, 

when the vehicle is detected beyond the maximum effective range of the weapon systems on the 

detecting platform. Second, the degradation will continue uninterrupted only as long as the 

vehicle is not detected again. Each time the vehicle is detected, the degradation process begins 

again when line of sight is lost. 

Initially, for simplicity, we assume the target location to be distributed uniformly over all 

the possible cells it may occupy. This simplification is plausible because some vehicles may not 

move at all, others may move at a constant velocity, yet others may travel at varying velocities. 
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Considered over many such targets a uniform distribution may depict the average of all these 

scenarios. Other factors may weigh on the distribution of vehicle location, such as the terrain. 

Calculations 
The entropy calculations used to model the degradation of information in this scenario are 

similar to those in the previous sections. Tracking the uncertainty of location of a particular 

vehicle that has been detected can be accomplished by stepping through a time sequence. Figure 

17 depicts the knowledge of the detected vehicle at the time of detection t0. At this time, the 

entropy is 

i 

eo=-2>;ln(A) = ln(l) = 0. 
1=1 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 1.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 

Figure 17. Probability distribution of vehicle location at the time of detection. 

Suppose in the next time step the vehicle is not detected or killed, and the movement rate 

of the vehicle allows the possibility for it to occupy any of the adjacent cells. Figure 18 shows 

how the uniform location distribution allocates the probability to nine (32) possible cells. The 

entropy value increases to 

el = -2>, ln(A) = -InQj = ln(9) = 2.1972, 

0.00 0.00 0.00 0.00 0.00 

0.00 0.11 0.11 0.11 0.00 

0.00 0.11 0.11 0.11 0.00 

0.00 0.11 0.11 0.11 0.00 

0.00 0.00 0.00 0.00 0.00 

Figure 18. Probability distribution of vehicle location after the first time step. 
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so the information gain over the first time step is 0 - 2.1972. 

If we assume that the vehicle can travel to one cell in each time step, the entropy after i 

steps is 

e, =ln((2z + l)2) = 21n(2/ + l). 

Figure 19 shows how information gain decreases over time, assuming no re-detections in 

the i* time step. The expression plotted is 

where emax 
= (# of vehicles) * ln(# of grids in the battlespace) is defined as the maximum 

uncertainty for the given scenario. 

Figure 19. Cumulative information gain is a decreasing function 

over time, for a non-redetected mobile target. 

Recall location information for a vehicle typically increases when Blue determines where 

the vehicle is not located, through scans with his sensors. Information gain, therefore, typically 

increases. When a vehicle is detected, there is a sharp increase in information gain, followed by 

decreases due to degradation. Since the searcher should not be penalized for achieving a 
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detection, the information gain does not degrade below the lower bound discussed earlier. Recall 

that Figure 2 demonstrates this idea using a hypothetical scenario of 5 enemy vehicles. The 

trajectory in Figure 2 initially followed by all five vehicles but eventually only by vehicle 3 

represents the cumulative information gain for the Blue force provided there are not detections. 

Normalizing Information Gain 
Since information gain values are dependent upon the number of enemy vehicles and the 

size of the battle space (the number of cells), it may be useful to normalize the measure, as 

follows. Let E donote normalized information gain, so 

min 2X>2X + X % 
[iel 16/« Ml-I*) 

max 

where es represents the entropy, (or uncertainty) due to the search of the battlespace, ed 

represents the entropy due to degradation of previously detected vehicles, /is the set of all 

surviving vehicles, and /* is the set of all undetected vehicles. We note E e [0,1J. At time zero, 

when no cells have been searched and no vehicles have been detected, 1 = 1* and Ye   = e 
' Z_i   Si max' 

iel 

so E = 1. If all vehicles were detected at time t, then at that moment, ^es = 0 so E = 0. 
iel 

Extension to Include Terrain Features 
The degradation model does not consider terrain features of cells surrounding the cell 

were detection has occurred. Likewise, the prototype software does not use this information in 

its calculations of degradation. Obviously terrain attributes would influence where an enemy 

vehicle could travel and would help to narrow the possible location of a vehicle in time periods 

subsequent to detection. In principle, this could be handled simply. For instance, with the model 

described above, if the detected vehicle is suspected to be located in a 5 x 5 square of cells, and if 

the location distribution is assumed to be uniform, then the scenario is as shown in Figure 20. 

The entropy at this moment would be ln(25) = 3.2189. Suppose now that the four upper right 

cells represent terrain that is not trafficable. The new cell probabilities can be adjusted to 

represent this situation. In this case each cell is assigned a mass value of 1/(25-4) = 1/21 = 
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0.0476, as shown in Figure 21. The entropy value over this reduced terrain set is ln(21) 

3.0445. 

0.04 0.04 0.04 0.04 0.04 

0.04 0.04 0.04 0.04 0.04 

0.04 0.04 0.04 0.04 0.04 

0.04 0.04 0.04 0.04 0.04 

0.04 0.04 0.04 0.04 0.04 

Figure 20. Uni brm probability mass for a 5 x 5 area. 

0.0476 0.0476 0.0476 0 0 

0.0476 0.0476 0.0476 0 0 

0.0476 0.0476 0.0476 0.0476 0.0476 

0.0476 0.0476 0.0476 0.04 0.0476 

0.0476 0.0476 0.0476 0.04 0.0476 

Figure 21. Adjusted probability mass, accounting for terrain that is not trafficable. 

There is a capability in Janus to represent the trafficability of the terrain cells. Based on 

terrain data within Janus, a prior distribution for target locations could be constructed. A tactical 

intelligence officer conducts a similar analysis when he identifies the Go, Slow-go and No-go 

terrain for the commander1. Suppose for example, the values for a given piece of terrain are 

assigned as shown in Figure 22. 

A prior distribution is easy to construct by normalizing these values so that the matrix 

represents a probability distribution. Each time the possible area containing the enemy vehicle 

expands due to degradation, a new prior matrix can be computed. Let Djj represent the 

degradation matrix, (like Figure 18 above) with i rows and j columns. Similarly, let T\j 

represent the terrain matrix, (like Figure 22 above). Then the resulting distribution would be 

calculated as 

"'Go, Slow-go, and no-go" are common terms used by intelligence officers and engineer officers to classify the 
relative trafficability of terrain. 
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p,,=- KK) 
'""zzKX'i/)' 

where Pjj represents the probability of the vehicle occupying cell i,j. 
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Figure 22. Example Janus terrain matrix values. 

6. SUMMARY AND CONCLUSIONS 

We applied our software implementation of information gain computations in several 
exercises and experiments, attempting to follow rather generic scenarios. Results of these 
applications suggest information gain is a very useful and adaptable measure of effectiveness. It 
provides analysts, commanders and war planners a much needed quantitative tool related to 
acquisition of information by the Blue commander, as a result of data obtained from his units in 
the battle space. 

In the course of implementing the software within the JETS post-processor, we had to 
overcome several obstacles related to Janus and the information gain measure. Some of the 
obstacles have been dealt with very crudely, and as a result, the measure implemented at the 
present time is itself somewhat crude. Even so, we believe it is useful in its present form. It 
seems clear the measure can be implemented similarly in other combat simulations. 

We plan to improve this tool, to improve computation of the MOE, by 
• Upgrading the mobile target model; 
• Implementing improved PD models; and 
• Including effects of terrain characteristics, to facilitate automating prior distributions, and to 

upgrade the model of information decay with mobile targets. 
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Future Work 

Including Vehicle Direction of Travel in the Degradation Model 
An improvement to this model would account for the last known direction of travel of the 

vehicle. This could influence the shape of the area of the possible locations of the vehicle after it 

has been detected, which might be different from the square region described in Section IV. 

Other factors such as the disposition of the enemy forces, and enemy doctrine, could greatly 

effect the likelihood that the vehicle has moved, and in which direction it might possibly travel. 

The vehicle's actions may also depend on whether it has detected blue vehicles, and their 

locations. 

Applying Degradation to All Searched Sectors 
It makes sense that the degradation concept applied to detected mobile targets should be 

applied to the sectors searched by the Blue force in which no enemy vehicles were detected. 

This is based on the idea that even though Blue may have observed no enemy forces in a 

particular cell, as time continues, he is less certain that this cell remains unoccupied. 

Computations to implement this appear feasible. In this case the probability an enemy vehicle 

occupies a previously vacant cell is conditional (primarily) on the current location of the enemy 

vehicles. As a crude model, the computations could be based on the enemy vehicle density. The 

more dense the vehicles, the higher the probability one vehicle might enter a previously searched 

cell that Blue's sensors judges to be vacant. 
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Appendix A. Bayesian Updating 

In this implementation we use Bayes' formula to "update" the state of knowledge the 

Blue commander has about the presence and locations of opposing Red assets. Above we 

suggested Blue's "state of knowledge" could be represented by a probability distribution for each 

of the Red assets, and Blue's increase in information could be measured by the decrease in 

entropy when this distribution is changed as a result of information receipt. 

Simply stated, Bayes' formula is as follows: suppose E„ E2,..., En is a partition of the 

sample space, representing "Effects" that might be observed, and let c„ c2,... cm be a partition of 

the same space into "causes." We assume the probabilities of the effects, given the causes, 

P[Ei|Cj], are known, and the "prior" probabilities of the causes, P[Cj] are also known. Bayes' 

formula can be used to determine the conditional probability a certain cause Cj occurred, given 

the effect Ej is observed, as follows: 

P[cj\Ei]= m       
,l ji    ljl     . 

Z(m\CjY P[cj]) 

We interpret the probability on the left to be an "updated" version of the prior, P[cJ, caused by 

receipt of the information that Ej had occurred. 

Suppose a battle area is considered to be composed of a large number of small cells C„ 

C2,... CN, and suppose reconnaissance or observation during combat can provide information 

implying a given cell Cy holds a given target, T, with detection probability P[)e(0,l) (given Te 

Cj). Similarly, suppose the false alarm rate for this recon platform on this target in this area is 

PF. To simplify notation, let "I(j) " denote "recon information indicates T is in C/," and let "T(j) " 

denote the event Tis in cell Cy." The current state of information, intel and recon about the 

location of T is represented by the current probability distribution for the location of T (which is 

the prior distribution for updating purposes). 

Let^y denote the prior probability of T(j):j=l,2,-.,N. We use Bayes' formula to update 

the current distribution to take into account new information about rand, we compute the 

decrease in entropy of the target system to measure the value ofthat information. 
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To summarize: P[I(i) \ T(j) ] depends on the scenario, recon tactics and capabilities of 

the sensors involved. We are assuming that, for the current search of cell C,-, 

P[W)]=PJ; 

P[Iö)\W)] = PD; 

P[i(i)\T(i)] = PF,M. 

Then by Bayes' formula, 

P[TU)\IU)]=P      *?' r, 
PDPJ+W-PJ) 

and 

P[T(0\IU)]= p     /f' z;i*j- 
PDPJ+PFQ-PI) 

As a special case, relevant for Janus play of combat, suppose the false alarm probability 

of Blue's sensor system is zero. Then application of Bayes' formula gives 

P[T0)\I(j)] = l.O; 

P[T(i)\I(j)] = 0.0; 

P[T(i)\~ I(j)]= .   P'      ; 
1-PDPJ 

and 

P[TU)\~IU)]=\     °   J- 
1-PDPJ 

Here, "~I(j)" indicates the event "recon in celly fails to detect the target." 

The prior is updated to the posterior using knowledge of which cells have been searched and the 

PD of the searching sensor(s). Since the denominators in each case are identical we treat them as 

a multiplying constant. See [1] for a complete development of this formulation. 
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Appendix B. Software Specifications 

This software calculates a measure of information gained concerning the battlefield 
environment in a computer combat simulation. It is based on how much of the battlefield was 
scanned by entities over the course of a simulation and the probability that they would have seen 
an enemy if one had been in their fields of view. 

Data are calculated continuously for every entity and aggregated, for each side, per 

minute of game time. Results are stored in a table formatted for input into the Janus Evaluator's 

Tool Set (JETS). JETS is a postprocessing tool developed at the US Military Academy for use in 
analyzing data from the Janus combat simulation. Major components of this software may be 
adapted for use with other simulations that use grid terrain maps. 

Command Line Interface 

Execution requires two arguments, a three-digit scenario number and a two-digit run 
number, and may take one option. The command format is: 

bki sss rr [-t] 

where bki is the program name, sss is the 3-digit scenario number, rr is the 2-digit run number, [ 
] denotes optional entry, - (dash) is parsed as an option flag, the t option turns on test mode, 
which produces a detailed test report of each module as it is being run. This slows down run 
speed and is suggested only for debugging and verification. 

Input File Specifications 

Janus version 6.x files automatically read as input are: 

D?LOYsssrr. DAT Initial force deployment file. 
FORCEsra. DAT Scenario force structure file. 
JSCRNÄ^rr. DAT Indicates which terrain file to use. 
PPMOVEw^rr. DAT Event recording file, with location, direction and field of view. 
SYSTEMsra/r. DAT Characteristics file, with sensor height and range. 
TERAINxxx DAT Terrain file. 

Environmental variables PROD AT, SCNDAT, and TRNDAT are checked to determine file 
locations. The user is prompted for locations if those variables or the files do not exist. 
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Output File Specifications 

Output is a comma-delimited ASCII file listing the mean entropy and BKI by side for 

each minute. This file is intended to be input for the JETS *.jtr file. It therefore includes the 

header TTT ENTROPY as line 1 and the footer %%% as the last line.   It uses the following 

format: 

hours,minutes,seconds,entropy,bki 

example: 0,0,0,10.276429,0.097310 

Time Zero is a uniform value based on \ln terrain cells, representing an initial baseline. The 

seconds value always will be zero and is included for conformity with the JETS format. A value 

for days may be added if analysis trends require it. 

Test output produced with the -t option also is an ASCII file. Each group of lines 

contains results of logic checks generated by the testprocs module, which is enabled by the -t 

switch. These are the author's debugging checks and are left in to assist users in verifying the 

software flow. It is expected that this option rarely will be used once users become comfortable 

with the output. 

Interactive Command Language 

This program is designed to run without user interaction. Prompts will occur only under 

error conditions. 

Errors 

Error conditions will alert the user with an audible beep and a screen prompt. Where 

appropriate, the prompt will include a format statement and possible options. The program 

supports the following error messages. Italicized words represent parameters that are replaced by 

variable names or character strings. 

1. Usage: bki (scenario #) (run #) [-t] 
Enter Scenario Number: 
Enter Run Number: 

2. Path to system file is not set. 
Enter full path (eg, /users/janus/jadm/v600/projects/demo/scn) 

3. Cannot open system file 
4. Cannot open force file 
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5. Path to recording file is not set. 
Enter full path (eg, /users/janus/jadm/v600/projects/demo/pps) 

6. Cannot open ppmove file 
7. Cannot openjscreenfile 
8. Path to terrain file is not set. 

Enter full path (eg, /users/janus/jadm/trn) 
9. Cannot open terrain file 
10. Memory allocation for path failed. 

Logic for Update 

Update module flow narrative: 

I. Find number of undetected units by side. 
A.       Loop for all 6 sides: 

1.        Loop for the number of units in each side: 
a)        If the unit's Seen flag is not set: 

(1)      Total undetected for that side is increased by the number of sub-units. 
II. Find the entropy of detected units by side. 

A.       Loop for all 6 sides: 
1.        Loop for the number of units in each side: 

a)        If the unit's Seen flag is set: 
(1) Sub-cells for entropy calculation is State2 ("State" at detection is set to 1). 
(2) Unit-entropy = ln(sub-cells). 
(3) If unit-entropy is less than the basic entropy (per unit) for that side: 

(a) Entropy for that side is increased by the unit-entropy x number of sub 
units in the aggregate. 

(b) The unit's Seen flag is increased by 2. 
(4) Otherwise, set the Seen flag to 0 (not seen) and increase the number of 

undetected units for that side by the number of sub-units. 
III. Find the entropy of undetected units by side. 

A. Loop for all 6 sides: 
1.        Add the undetected per side to a Total Undetected as it loops. 

B. Loop for all 6 sides: 
1.        If there are undetected units on that side: 

a)        Entropy for that side is set to its basic entropy (per unit) times the difference 
between the Total Undetected and the undetected for that side. (This considers 
each side versus the 5 other sides.) 

IV. Add each side's "detected entropy" to its "undetected entropy" for a "total entropy." 
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DETEX Logic 

I. Janus file structure, PPDTECsssrr.DAT: 

Offset Variable Type 
0 FORTRAN record mark int 
4 Game time in minutes float 
8 Observer Unit number int 

12 Observer status int 
16 Target Unit number int 
20 Target status int 
24 Range (kilometers) float 
28 Detecting sensor char 
29 Observer X coordinate float 
33 Observer Y coordinate float 
37 Target X coordinate float 
41 Target Y coordinate float 
45 FORTRAN record mark int 
49 FORTRAN record mark int 
53 2d Event Game Time float 

Detex module flow narrative: 

1. Determine total number of detection events. 
a. Find end-of-file. 
b. Total detections = EOF / 49 

2. Do while the event counter is less than total number of detection events. 
a. Read event time. 
b. If time = current time step: 

(1) Skip Observer info (8 bytes) 
(2) Read Target Unit number 
(3) Loop for all 6 sides: 

(a) If Target number is less than the number of units in that side: 
(aa) If Target's Seen Flag is not set, the number of Undetected units for that side is 

decreased by the number of sub-units in the target. 
(ab) Set Target's Seen Flag to 1. 
(ac) Break from loop. 
(b) Otherwise, Target Unit number is decreased by the number of units in that side. 

c. Otherwise, skip 12 bytes (to Offset 20) to catch up to 2b sequence. 
d. Skip 33 to align with Offset for next Event Game Time. 
e. Increment event counter and go back to 2. 
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III.      Detex flow chart: 
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Kills Logic 

I. Janus file structure, PPKILSsssrr.DAT: 

Offset Variable Type 
0 FORTRAN record mark int 
4 Game time in minutes float 
8 Kill type int 

12 Victim Unit number int 
16 Victim X coordinate float 
20 Victim Y coordinate float 
24 Number of elements killed int 
28 Killer Unit number int 
32 Killer X coordinate float 
36 Killer Y coordinate float 
40 Weapon type int 
44 # Elements for this victim char 
45 Victim mounted status short 
47 Range float 
51 FORTRAN record mark int 
55 FORTRAN record mark int 
59 2d Event Game Time float 

Kills module flow narrative: 

1. Determine total number of kill events. 
a. Find end-of-file. 
b. Total kills = EOF / 55. 

2. Do while the event counter is less than the total number of kill events. 
a. Read kill time. 
b. If time = current time step: 

(1) Skip kill type info (4 bytes) 
(2) Read Victim Unit number 
(3) Loop for all 6 sides: 

(a) If Victim number is less than the number of units in that side: 
(aa) Break from loop. 

(b) Otherwise, Victim Unit number is decreased by the number of units in that side. 
(4) Skip Victim X and Y coordinates (8 bytes). 
(5) Read number of units killed. 
(6) Decrease the victim's sub-units (aggregate) by the number of units killed. 
(7) Skip 31 to start of next Event Game Time. 

c. Otherwise, skip 51 to start of next Event Game Time. 
d. Increment event counter and go back to 2. 
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III.      Kills flow chart: 
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